Sugar radicals formed by photoexcitation of guanine cation radical in oligonucleotides.
نویسندگان
چکیده
This work presents evidence that photoexcitation of guanine cation radical (G+*) in dGpdG and DNA-oligonucleotides TGT, TGGT, TGGGT, TTGTT, TTGGTT, TTGGTTGGTT, AGA, and AGGGA in frozen glassy aqueous solutions at low temperatures leads to hole transfer to the sugar phosphate backbone and results in high yields of deoxyribose radicals. In this series of oligonucleotides, we find that G+* on photoexcitation at 143 K leads to the formation of predominantly C5'* and C1'* with small amounts of C3'*. Photoconversion yields of G+* to sugar radicals in oligonucleotides decreased as the overall chain length increased. However, for high molecular weight dsDNA (salmon testes) in frozen aqueous solutions, substantial conversion of G+* to C1'* (only) sugar radical is still found (ca. 50%). Within the cohort of sugar radicals formed, we find a relative increase in the formation of C1'* with length of the oligonucleotide, along with decreases in C3'* and C5'*. For dsDNA in frozen solutions, only the formation of C1'* is found via photoexcitation of G+*, without a significant temperature dependence (77-180 K). Long wavelength visible light (>540 nm) is observed to be about as effective as light under 540 nm for photoconversion of G+* to sugar radicals for short oligonucleotides but gradually loses effectiveness with chain length. This wavelength dependence is attributed to base-to-base hole transfer for wavelengths >540 nm. Base-to-sugar hole transfer is suggested to dominate under 540 nm. These results may have implications for a number of investigations of hole transfer through DNA in which DNA holes are subjected to continuous visible illumination.
منابع مشابه
UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures
This work presents evidence that photo-excitation of guanine radical cations results in high yields of deoxyribose sugar radicals in DNA, guanine deoxyribonucleosides and deoxyribonucleotides. In dsDNA at low temperatures, formation of C1'* is observed from photo-excitation of G*+ in the 310-480 nm range with no C1'* formation observed > or =520 nm. Illumination of guanine radical cations in 2'...
متن کاملSugar radicals in DNA: isolation of neutral radicals in gamma-irradiated DNA by hole and electron scavenging.
In this investigation of the radical formation and the reaction of radicals in gamma-irradiated DNA, we report the isolation of putative neutral radicals by the scavenging of holes by Fe(CN)6(4-) and of electrons by Fe(CN)6(3-). Experiments are performed under conditions that emphasize direct and quasi-direct effects (collectively called direct-type effects.) Samples containing Fe(CN)6(4-) show...
متن کاملMechanistic Aspects of Hydration of Guanine Radical Cations in DNA
The mechanistic aspects of hydration of guanine radical cations, G(•+) in double- and single-stranded oligonucleotides were investigated by direct time-resolved spectroscopic monitoring methods. The G(•+) radical one-electron oxidation products were generated by SO4(•-) radical anions derived from the photolysis of S2O8(2-) anions by 308 nm laser pulses. In neutral aqueous solutions (pH 7.0), a...
متن کاملOxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines
The carbonate radical anion is a biologically important one-electron oxidant that can directly abstract an electron from guanine, the most easily oxidizable DNA base. Oxidation of the 5'-d(CCTACGCTACC) sequence by photochemically generated CO3*- radicals in low steady-state concentrations relevant to biological processes results in the formation of spiroiminodihydantoin diastereomers and a prev...
متن کاملVibrational Investigation of DODC Cation for Recognition of Guanine Dimeric Hairpin Quadruplex Studied by Satellite Holes
We have introduced the satellite hole spectral method to examine the binding sites of 3,3′-diethyloxadicarbocyanine cation (DODC+) to various guanine-rich oligonucleotides. The satellite hole patterns along with normal mode calculations allow us to determine the interaction of DODC+ with a dimeric hairpin quadruplex formed by sequence d(G4T4G4). Our results are consistent with the groove bindin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 25 شماره
صفحات -
تاریخ انتشار 2007